CONFIDENTIAL # (b) (4) ORAL TOXICITY STUDY IN RATS (DAILY ADMINISTRATION FOR 4 WEEKS) We, the undersigned, hereby declare that the work was performed under our supervision, according to the procedures herein described, and that this report provides a correct and faithful record of the results obtained. # CONTENTS | | | Page | |--|---|----------------------------------| | SUMMARY | | 1 | | INTRODUCT | ION | 2 | | PROCEDURE | | 3 - 6 | | RESU'LTS | | | | Mort
Food
Body
Effic | ical signs tality I consumption rweight change riency of food utilization oratory investigations | 7
7
7
7
7 | | (a)
(b)
(c) | Urinalysis
Haematology
Blood chemistry | 7
7
7 | | • | thalmoscopy
ninal studies | 8 | | (i)
(ii)
(iii) | Macroscopic findings
Organ weights
Histology | 8
8
8 | | ΓIGURES | | | | 1.
2. | Growth of male rats Growth of female rats | 9
10 | | TABLES | | | | 1.
2.
3.
4.
5.
6.
7.
8. | Group mean food consumption (g/rat/week) Group mean bodyweights and weight gains (g) Group mean food conversion ratios Urinalysis - group mean values Haematology - group mean values Blood chemistry - group mean values Ophthalmoscopy - summary of observations Organ weights (absolute) - group mean values (g) | 11
12
13
14
15
16 | | 9. | for rats sacrificed at 4 weeks Organ weights (relative) - group mean values | 18 | | | |] | Pag | e | |-----------|--|-----|-----|-----| | PPENDICES | | | | | | 1. | Mortalities with relevant ante- and post mortem observations | | 20 | | | 2. | Cage mean food consumption (g/rat/week) | | 21 | | | 3. | Individual bodyweights (g) | 22 | - | 2 | | 4. | Urinalysis - individual values | | 26 | | | 5. | Haematology - individual values | 27 | - | 21 | | 6. | Blood chemistry - individual values | 29 | - | 30 | | 7. | Ophthalmoscopy - individual observations | | 31 | | | 8. | Macroscopic pathology - individual observations | | | | | | in rats sacrificed at 4 weeks | 32 | - | 3 5 | | 9. | Organ weights (absolute) - individual values (g) for rats | | | | | | sacrificed at 4 weeks | 36 | - | 37 | | 10. | Organ weights (relative) - individual values (g) for rats | | | | | | sacrificed at 4 weeks | 38 | - | 3 9 | | 11. | Histopathological findings in individual rats sacrificed | | | | | · = | | 4.0 | | 4.0 | #### SUMMARY Test compound: (b) (4) Test species: Route of administration: Oral (gavage) once each day, seven days a week. Total duration of dosing: 4 weeks. Dosage levels: 50 mg/kg/day 200 mg/kg/day 600 mg/kg/day #### Results Reaction to treatment at the various levels were: #### 600 mg/kg/day - 1. Reduced grooming activity, salivation and resistance to being handled. - 2. The death of 2 females. - 3. Reduced rate of bodyweight gain. #### 200 mg/kg/day Slightly reduced rate of bodyweight gain. #### 50 mg/kg/day No reaction to treatment was seen. #### INTRODUCTION This study, performed at the (b) (4) was part of a comparative study with five compounds coded (b) (4) The five compounds were tested using common control groups. #### PROCEDURE #### Animal management and treatments Eighty rats of the CFY strain were obtained from Carworth Europe, Huntinggon, England on 27 January 1972. The rats were allocated to 4 treatment groups as follows: | Group | Treatment level | No. of | rats | |-------|-----------------------|--------|------| | | (b) (4) (mg/kg/day) | ď | ð | | 1A | Control | 10 | 10 | | 11 | 50 | 10 | 10 | | 12 | 200 | 10 | 10 | | 13 | 300 | 10 | 10 | Following an initial quarantine and acclimatization period of 28 days to accustom the rats to the environmental conditions existing in our laboratories, each animal was weighed and allocated to one of several arbitrary weight ranges. This acclimatization period was unduly prolonged because no test compound was available. Equal numbers of animals from within each weight range were randomly allocated to each of the 4 treatment groups, and all animals then identified by earmark. In this way we ensured that each group contained a similar population of rats and initial mean bodyweights were also approximately equalized. #### Accommodation The rats were housed five to a cage (unless the number was reduced by mortality) in suspended cages fitted with wire-mesh floors. Animal-room temperature and relative humidity were controlled at 21 \pm 2°C and 50 \pm 5%, respectively. #### Diet All rats had free access to tap water and standard laboratory rat food, Spiller's Laboratory Small Animals Diet (autoclaved). The efficiency with which food was utilized was assessed by calculation of mean food conversion ratios (FCR values), the ratio representing the weight of food consumed per unit gain in bodyweight. #### Test compound The sample of test compound used in this study was taken from a batch dated 17 February 1972. #### Administration of test compound was administered as a suspension in 0.5% sodium carboxymethyl cellulose. A series of suspensions were prepared, the concentrations being chosen to give a constant volume-dosage of 5ml/kg. Control animals received the vehicle alone at the same volume-dosage. All suspensions were prepared freshly each day and administered immediately afterwards through a rubber catheter (English numbers 3 or 4) inserted into the stomach. Treatment in the manner described was continued, at approximately the same time each day, once a day, seven days a week, for a total period of four weeks. იიი823 - #### Observations All signs of ill-health or reaction to treatment were recorded. Any rat showing signs of severe debility or intoxication was isolated. If death appeared imminent the rat was killed. The quantity of food consumed by each cage of rats was recorded weekly. Water consumption was assessed by inspection of the water bottles. Regular measurement of water intake was not introduced since there was no evidence of a treatment-related effect. The weight of each rat was recorded initially and at twice weekly intervals subsequently. #### Ophthalmoscopy Before treatment commenced, and after $\bf 4$ weeks, the eyes of all rats were examined using a Keeler indirect ophthalmoscope. #### Laboratory investigations #### (a) <u>Urinalysis</u> After 3 weeks, urine samples were collected from 5 males and 5 females from groups 1A and 13. The estimations performed, together with the methods used, were as follows: | (i) | pН | - | by EIL meter | |--------|-----------------------|---|--| | (ii) | Specific gravity (SG) | - | by refractometer calibrated against protein standards
- high values were checked by pyknometric weighing | | (iii) | Protein | - | using Albustix*. Positives were confirmed by precipitation with sulphosalicylic acid and quantitative estimation against Kingsway turbidimetric standards. | | (iv) | Reducing substances | - | using Clinotest* | | (v) | Glucose | - | using Clinistix* | | (vi) | Ketones | - | using Acetest*. Positives were confirmed by Rothera's test | | (vii) | Bile pigments | - | using Ictotest*. Positives were confirmed by Fouchet's test | | (viii) | Urobilin | - | by Bogomolow's test | For tests (iv) to (viii) inclusive, results were graded as follows: - 0 signifies negative tr signifies marginal positive (trace) - + signifies positive ^{*}Diagnostic reagent of Ames Company, Stoke Poges, England. (ix) Microscopy of spun deposit - after centrifugation at 1000rev/minute for 10 minutes, the deposit was examined for: | epithelial cells | (E) | |------------------------------|-----| | polymorphonuclear leucocytes | (P) | | mononuclear leucocytes | (M) | | erythrocytes | (R) | | organisms | (0) | | casts | (C) | | abnormal constituents | (A) | Gradings of cell frequency in deposit were recorded as follows: - 0 signifies none observed 1 signifies few in some fields 2 signifies few in all fields 3 signifies many in all fields - (b) <u>Haematology</u> $\dot{\Lambda}$ iter 4 weeks, samples of blood were withdrawn-from the orbital sinus of all rats, prior to treatment on the day of sampling. The estimations performed, together with the methods used, were as follows: | Packed cell volume (PCV) - Estimated by Technicon SMA4A
Haemoglobin (Hb) - Estimated by Technicon SMA4A
Red cell count (RBC) - Estimated by Technicon SMA4A | % red cells
g/100ml blood
x10 ⁶ cells/cmm | |---|--| | Absolute indices: Mean corpuscular haemoglobin | | | concentration (MCHC) and mean cell volume (MCV): | - | | $MCHC = Hb (g\%) \times 100 + PCV (\% red cells)$ | % | | MCV = PCV (% red cells) x 10 \div RBC (x10 ⁶ /cmm) | cubic microns | | Total white cell count (WBC) - Estimated by Technicon SMA4A | x103 cells/cmm | | Differential count: | | | (N) = Neutrophils | | | (L) = Lymphocytes | | | (E) = Eosinophils | | | (B) = Basophils | x10 ³ cells/cmm | | (M) = Monocytes | | | Platelet count - direct visual count (ammonium oxalate, | | | 1% diluent) - Method of Brecher, G. and Cronkite, E.P. | | | (J. Applied Physiology 1950, <u>3</u> , 365) | x10 ³ cells/cmm | | Thrombotest - Owren, P.A. (Lancet, 1959, ii, 774) | seconds | #### (c) Blood chemistry After treatment for 4 weeks, samples of blood were withdrawn from the orbital sinus of all rats, prior to treatment on the day of sampling.
The estimations performed, together with the methods used, were as follows: Plasma Urea - Technicon Autoanalyser method (diacetyl monoxime) Plasma Glucose - Technicon Autoanalyser method (Glucose Oxidase) Serum alkaline phosphatase (SAP) - Technicon Autoanalyser method (4-amino-phenazone) Serum glutamic-pyruvic transaminase (SGPT) - Technicon Autoanalyser method sheet N.54 modified at HRC (fluorimetric) mg% King Armstrong or KA units Sigma Frankel or SF units #### Terminal studies On completion of the treatment period, all surviving rats were killed. All rats were killed by carbon dioxide asphyxiation. The appearance of the tissues was then noted and the weights of the following organs recorded: adrenals heart liver brain kidneys testes For intergroup comparison, relative organ weights were calculated as percentages of bodyweight, \times 100. Samples of the following tissues, (together with any other macroscopically abnormal entity) were preserved in 4% buffered formaldehyde (except eyes, which were preserved in Davidson's fixative): adrenals liver skin* aorta* lungs spleen brain (medullary, lymph nodes (cervical stomach (glandular cerebellar and and mesenteric) and non-glandular) cortical sections) oesophagus* testes caecum ovaries thymus colon* pancreas thyroid duodenum pituitary tongue* prostate* trachea* eyes femur* salivary glands* urinary bladder heart sciatic nerve* uterus ileum body fat (if all tissues showing jejunum* present)* macroscopic abnormality seminal vesicles* kidneys mammary gland* skeletal muscle* Femoral marrow smears were prepared and fixed in methyl alcohol. Tissues marked thus* were preserved but not processed further in the first instance. Prior to microscopic examination tissues were embedded in paraffin wax, sections cut at 5μ and stained with haematoxylin and eosin. In addition, frozen sections of liver and kidney were cut at 12μ and stained for fat with Oil Red O, and for glycogen (liver) and basement membranes (kidney) with PAS. In the first instance, microscopic examination was confined to: - Macroscopically abnormal tissues from all rats that died, in order to elucidate the predominant pathology. - (ii) All rats of groups 1A and 13 killed after treatment for 4 weeks. #### Statistical methods Student's 't' test was employed to assess the significance of intergroup differences where the data suggested evidence of a response to treatment. #### RESULTS #### CLINICAL SIGNS Rats receiving 600 mg/kg/day showed a reduction in grooming activity, the fur becoming stained with urine, and salivation from between 15 to 25 minutes after dosing. In addition, these animals, particularly the females, became difficult to handle when dosing. Four males and seven females receiving 600 mg/kg/day showed signs of respiratory distress during weeks 3 and 4. Rats receiving 200 mg/kg/day and 50 mg/kg/day remained normal throughout. #### MORTALITIES (Appendix 1) Two females receiving 600 mg/kg/day died during the night of day 8. Macroscopic examination revealed no abnormalities in one rat, while in the second only gaseous distension of the stomach and small intestine was observed. One male control died during the night of day 17, having shown previous weight loss, and pallor of the extremities. Macroscopic examination revealed enlargment of the spleen and liver, the latter organ also appearing abnormally pale. #### FOOD CONSUMPTION (Table 1, Appendix 2) There was no marked adverse effect on food consumption. #### BODYWEIGHT CHANGE (Table 2, Appendix 3, Figures 1 and 2) There was a reduction in the rate of bodyweight gain in rats receiving 600 mg/kg/day, and to a lesser extent 200 mg/kg/day. The rate of bodyweight gain was not adversely affected in rats receiving 50 mg/kg/day. #### EFFICIENCY OF FOOD UTILISATION (Table 3) There was an overall reduction in the efficiency of food utilisation in rats receiving 600 mg/kg/day, and to a lesser extent those receiving 200 mg/kg/day. #### LABORATORY INVESTIGATIONS a. <u>Urinalysis</u> (Table 4, Appendix 4) All findings were considered to be within normal limits. b. <u>Haematology</u> (Table 5, Appendix 5) No differences were observed between control and treated values that were considered to be related to dosage with the test compound. Blood chemistry (Table 6, Appendix 6) No differences were observed between the values for treated and control animals that were considered to be related to dosage with the test compound. #### OPHTHALMOSCOPY (Table 7, Appendix 7) No abnormalities of the eyes were observed. #### TERMINAL STUDIES #### a. Macroscopic post mortem examination (Appendix 8) No abnormalities were observed that were considered to be related to treatment with the test compound. A number of rats from both control and treated groups showed a minimal display of chronic respiratory disease, which was generally characterised by the presence of subpleural foci. Other isolated findings observed were bilateral cortical scarring of the kidneys in Rat 118 (50 mg/kg/day), gaseous distension of the small intestine in Rats 132 and 136 (600 mg/kg/day), and in Rats 128 and 300 (200 mg/kg/day). #### b. Organ weights (Tables 8 and 9, Appendices 9 and 10) The only difference between mean values recorded for control and treated animals that was possibly related to treatment, related to the adrenal glands, which were slightly heavier in males receiving 600 mg/kg/day than in the remaining sub-groups of males. Since the values recorded for females receiving this dosage level were comparable with the control values, and since the histological picture was normal no significance can be attributed to this finding. #### c. <u>Histology</u> (Appendix 12) The microscopical abnormalities and variations from normal that were seen in the animals used in this experiment are described in detail. The following comments are made in summary: Liver. Vacuolated and occasionally distended hepatocytes were seen in the centrilobular areas in a proportion of male animals from both control and treatment groups. Small foci of mononuclear cell infiltration were seen in the parenchyma in rats 2σ , 173, 179, (Control) 134σ , 306, 310, (600 mg/kg/day). These changes were considered to be those commonly seen in the livers of laboratory rats, were non-specific and hence were disregarded from the point of view of the experiment. <u>Kidney</u>. Small groups of tubules characterised by their basophilic staining, a proportion of whice were distended with eosinophilic material were seen in association with minimal mononuclear cell infiltration of the renal cortex, in rats 1 °, 4 ° (Control) 133 °, 135 °, 136 °, 140 °, 308 °, (600 mg/kg/day). Small foci of dystrophic mineralisation were seen in the medulla in rat 310 °, (600 mg/kg/day). These changes were considered to be those commonly seen in laboratory rats and were not significant. Other histopathological entities observed but not considered to be significant included: Foci of extra-medullary haemopoiesis in the spleen of several animals from both control and treatment groups. Minimal mononuclear cell infiltration in the ventricular myocardium in rats 5σ , 6σ , (Control) 3039 (600mg/kg/day). Plugs of eosinophilic material in the urinary bladder in rats 4¢, 7¢ (Control). Distended seminiferous tubules in one testis in rat 50 (Control). Telangiectasis in the parathyroid of rat 1769 (Control). #### Conclusion 000828 No histopathological change or variation from normal was seen in the tissues examined that was considered to be associated with the administration of the compound under test. FIGURE 1 Growth of male rats . FIGURE 2 Growth of female rats TABLE 1 Group mean food consumption (g/rat/week) Group: 1A 11 12 13 Compound: - (b) (4) Level (mg/kg/day): Control 50 200 600 | Week | ď | | | | ę | | | | |--------------|-----|-------|-----|-----|------------|-----|-----|-----| | WEEK | 1A | 11 | 12 | 13 | 1 A | 11 | 12 | 13 | | 1 | 186 | 197 | 180 | 183 | 136 | 142 | 122 | 122 | | 2 | 186 | . 197 | 196 | 191 | 129 | 142 | 129 | 133 | | 3 | 181 | 190 | 180 | 180 | 144 | 149 | 141 | 126 | | 4 | 209 | 2 0 5 | 189 | 196 | 154 | 145 | 131 | 142 | | Total | 762 | 789 | 745 | 750 | 563 | 578 | 523 | 523 | | %
control | - | 104 | 98 | 98 | - | 103 | 93 | 93 | TABLE 2 Group mean bodyweights (g) and weight gains | Group: | 1A | 11 | 12 | 13 | |--------------------|---------|----|---------|-----| | Compound: | - | | (b) (4) | | | Level (mg/kg/day): | Control | 50 | 200 | 600 | | Group | Initial | Weight | Weight gain | |-------|---------|------------|-------------| | | weight | at 28 days | 0-28 days | | 1Ad | 318 | 464 | 146 | | 11 | 314 | 469 | 155 | | 12 | 315 | 438 | 123 | | 13 | 316 | 426 | 110** | | 1AQ | 206 | 272 | 66 | | 11 | 209 | 273 | 64 | | 12 | 206 | 258 | 52* | | 13 | 208 | 244 | 36*** | ^{*} P<0.5 in comparison with control values ^{**} P<0.01 in comparison with control values ^{***} P<0.001 in comparison with control values TABLE 3 Group mean food conversion ratios | Group: | 1A | 11 | 12 | 13 | |--------------------|---------|----|---------|-----| | Compound: | - | | (b) (4) | | | Level (mg/kg/day): | Control | 50 | 200 | 600 | | | | | đ | | ç | | | | |---------|------|------|------|------|------|------|------|------| | Week | 1A | 11 | 12 | 13 | 1A | 11 | 12 | 13 | | 1 | 3.6 | 3.8 | 4.5 | 5.6 | 4.4 | 5.9 | 7.6 | 9.4 | | 2 | 5.2 | 6.2 | 5.6 | 6.8 | 7.6 | 6.5 | 6.8 | 8.3 | | 3 | 4.8 | 4.5 | 4.6 | 5.3 | 10.3 | 13.5 | 11.8 | 18.0 | | 4 | 10.5 | 10.8 | 21.0 | 13.1 | 38.5 | 20.7 | 26.2 | - | | Overall | 5.2 | 5.1 | 6.1 | 6.8 | 8.5 | 9.0 | 10.1 | 14.5 | TABLE 4 Urinalysis - group mean values Group: 1A 11 12 13 Compound: - (b) (4) Level (mg/kg/day): Control 50 200 600 | Group | Week
No. | Volume
ml/rat | pН | SG | Protein
mg% | |-------|-------------|------------------|-----|------|----------------| | 1Ac | 4 | 7.2 | 6.6 | 1034 | 68 | | 13ở | | 6.7 | 6.6 | 1043 | 30 | | 1Aº | | 5.1 | 6.5 | 1034 | 0 | | 139 | |
3.9 | 6.3 | 1041 | 0 | | | | | | | | TABLE 5 Haematology - Group mean values | Group: | 1 A | 11 | 12 | 13 | |--------------------|---------|----|-------|-----| | Compound: | - | (b |) (4) | | | Level (mg/kg/day): | Control | 50 | 200 | 500 | | Group | Week
No | pcv | Hb | RBC | мснс | MCV | WBC, 10 ³ /cmm | | | | | | Thrombotest secs | Platelets
10 ³ /cmm | |-----------------------|------------|----------------------|------------------------------|--------------------------|----------------------|----------------------|------------------------------|--------------------------|------------------------------|-----|-------------------|-----|------------------|-----------------------------------| | | | % | g% | 10 ⁶ /cmm | | СП | Total | N | L | Е | В | М | | | | 1Ao
11
12
13 | 4 | 46
49
48
47 | 14.3
14.9
14.8
14.6 | 7.4
7.6
7.6
7.6 | 31
30
31
31 | 65
63 | 14.1
15.5
12.3
15.3 | 1.3
1.7
1.4
1.4 | 12.6
13.6
10.8
13.9 | 0.1 | 0.0
0.0
0.0 | 0.0 | 26
27 | 532
576
659
602 | | 1AQ
11
12
13 | | 44
47
46
46 | 13.6
14.4
14.0
14.1 | 7.2
7.3
7.4
7.4 | 31
31
31
31 | 61
64
62
62 | 10.6
9.3
13.3
14.0 | 0.5
1.1
1.2
1.4 | 10.1
8.0
12.0
12.5 | 0.2 | 0.0
0.0
0.0 | 0.0 | 27
25 | 740
552
740
717 | TABLE 6 Blood Chemistry - Group mean values Group: 1A 11 12 13 Compound: Level (mg/kg/day): Control 50 200 600 Week Urea Total SAP Group SGPT Glucose KΑ SF mg% mg% units units l Ao lΑÇ TABLE 7 Ophthalmoscopy - summary of observations Group: 1A 11 12 13 Compound: - (b) (4) Level (mg/kg/day): Control 50 200 600 | Group | Week | No of | Ot | bserved defects of | | | | | | |--------------|------|------------------|------|--------------------|-------|--|--|--|--| | | | rats
examined | Lens | Cornea | Other | | | | | | l Ac* | 0 | 10 | 2 | - | - | | | | | | 11 | | 10 | 2 | _ | _ | | | | | | 12 | | 10 | 2 | - | _ | | | | | | 13 | | 10 | 2 | - | - | | | | | | 1 A Ş | | 10 | 1 | - | 1 | | | | | | 11 | | 10 | 1 | - | - | | | | | | 12 | | 10 | - | - | _ | | | | | | 13 | | 10 | - | - | - | | | | | | l Ao | 4 | 9 | 3 | _ | _ | | | | | | 11 | | 10 | 2 | - | _ | | | | | | 12 | | 10 | 2 | _ | _ | | | | | | 13 | | 10 | 2 | - | _ | | | | | | 1A7 | | 10 | | _ | _ | | | | | | 11 | | 10 | 1 | - | _ | | | | | | 12 | | 10 | - | - | _ | | | | | | 13 | | 8 | - 1 | - | _ | | | | | TABLE 8 Organ weights (absolute) - Group mean values (g) for rats sacrificed at 4 weeks | Level (mg/kg/day): | Compound: | Group: | |--------------------|-----------|--------| | Control | ı | 1A | | so | (b) (4) | 11 | | 200 | | 12 | | 600 | | 13 | | 1A\$
11
12 | 11A0
11
12
13 | Group | |------------------------------|------------------------------|------------------------------| | 267
279
256
242 | 461
471
438
417 | Body
weight | | 1.8 | 2.0
1.9
2.0
2.0 | Brain | | 1.0 | 1.6
1.6 | Heart | | 11.9
12.6
11.1
11.0 | 21.3
22.4
19.6
18.3 | Liver | | 2.2 | 3.8
3.5
3.4 | Kidney | | 88
82
84
82 | 64
65
69
74* | Adrenals
×10 ³ | | | 4.9 | Gonads | P < 0.05 in comparison with control values TABLE 9 # Organ weights (relative⁺) - Group mean values for rats sacrificed at 4 weeks 1A 11 12 Group: 13 Compound: Level (mg/kg/day): Control 50 200 | Group | Body
weight | Brain | Heart | Liver | Kidney | Adrenals
×10 ³ | Gonands | |---|--|--|--|--|--|---|--------------------------| | 1 A of
11
12
13
1 A Q
11
12
13 | 461
471
438
417
267
279
256
242 | 43
41
45
47
67
68
71
73 | 35
34
36
35
39
39
39
40 | 463
477
449
440
447
449
434
455 | 86
81
81
81
82
77
85
86 | 1.4
1.6
1.8**
3.3
3.0
3.3
3.4 | 107
106
114
109 | ⁺ as percentage control x 100 ** F <0.01 in comparison with control values # Mortalities with relevant ante and post mortem observations 11 12 13 Group: Aſ | | Compound: | - | | (b) (4) | | |-------|---------------|---------------|--------------------------|------------------------------|--| | | Level (mg/kg/ | day): Control | 50 | 200 | 600 | | Group | Rat No. | Day of death | | Observations | | | 1A¢ | 9 | 17 | | • | ale, right lobe | | | | | <u>Histology</u> : | | | | | | | All tissues s
change. | show evidence of a | dvanced autolytic | | | | | Heart: | Many lymphoid o | cells are seen in the | | | | | Liver: | Grossly infiltrate | ed with lymphoma cells. | | | | | Spleen: | Grossly infiltrate | ed with lymphoma cells. | | | | | Diagnosis: | Lymphocytic leuk | caemia. | | 139 | 304 | 8 | Found dead. | | | | | | | Autopsy: No | abnormalities det | ected. | | | | | Histology: | | | | | | | Liver: | | l foci of mononuclear are noted in the parenchyma. | | | 309 | 8 | Found dead. | | | | | | | | seous distension | of stomach and small | | | | | Histology: | itestine. | • | | | | | Autolytic cha | ange obscures his | tological detail. | | | | | Liver: | Congested. He normal limits. | patic architecture within | | | | | Kidney: | Congested. | | | | | | Adrenals: | There is evidenc | e of minimal congestion. | 13 Food consumption - by cages (g/rat/week) Group: 1A 11 12 Compound: Level (mg/kg/day): Control 50 200 600 | Group | Week | Cag | e No | Group | Week | Cage | e No | |-------|------|------|-------|-------|------|------|------| | | | 1 | 2 | | | 35 | 36 | | l Ao | 1 | 190 | 182 | 1 A♀ | 1 | 138 | 133 | | | 2 | 198 | 173 | , | 2 | 123 | 134 | | | 3 | 174 | 190 | | 3 | 139 | 148 | | | 14 | 196 | L225 | L | 44 | 156 | 152 | | Group | Week | Cag | e No | Group | Week | Cage | | | | [| 23 | 24 | | | 57 | 58 | | 110 | 1 | 199 | 194 | 119 | 1 | 125 | 148 | | | 2 | 202 | 192 | | 2 | 142 | 141 | | | 3 | 188 | 192 | | 3 | 155 | 143 | | | 44 | 199 | 211 | L | 4 | 143 | 146 | | Group | Week | Cage | e No. | Group | Week | Cage | No. | | | l | 25 | 26 | | | 59 | 60 | | 12 ♂ | 1 | 178 | 181 | 129 | 1 | 118 | 125 | | | 2 | 191 | 201 | | 2 | 128 | 129 | | | 3 | 185 | 174 | | 3 | 141 | 140 | | | 44 | 185 | 192 | | 4 | 133 | 129 | | Group | Week | Cage | No. | Group | Week | Cage | No. | | · | | 27 | 28 | | | 61 | 62 | | 13ở | 1 | 172 | 193 | 139 | 1 | 119 | 125 | | | 2 | 176 | 205 | | 2 | 121 | 145 | | | 3 | 162 | 198 | | 3 | 133 | 120 | | | 4 | 193 | 198 | | 4 | 139 | 145 | # Individual bodyweights (g) Group: 1A 11 12 13 Compound: - (b) (4) Level (mg/kg/day): Control 50 200 600 APPENDIX 3 Individual bodyweights (g) | Group 1 ^A male
Cage Rat
no.
1 1
2
3
4
5
Mean: | 0 3
320 338
346 370
275 315
328 361
320 350
318 347 | 7
375
395
340
381
385
375 | 10
398
414
360
402
412
397 | 14
431
433
385
422
441
422 | 17
441
451
390
432
458
434 | 21
452
458
402
428
470
442 | 24
471
472
416
450
485
459 | 28
476
484
431
450
490
466 | |--|---|---|--|--|--|--|--|--| | 2 6
7
8
9
10
Mean: | 348 385
320 355
291 315
335 345
295 312
318 342 | 405
371
350
380
322
366 | 428
396
365
340
340
374 | 455
424
395
307
371
390 | 465
446
410
381
426 | 495
470
428
394
447 | 505
477
430
410
456 | 512
477
436
420
461 | | Group size : | 10 10 | 10 | 10 | 10 | 9 | 9 | 9 | 9 | | Group mean : | 318 345 | 370 | 386 | 406 | 430 | 444 | 457 | 464 | | Mean change: | 27 | 26 | 15 | 21 | 24 | 14 | 13 | 7 | | Group 11 male
Cage Rat
no.
23 111
112
113
114
115
Mean: | 0 3
305 330
340 368
322 355
292 327
315 347
315 345 | 352
407
380
333
367
368 | 10
375
425
415
347
390
390 | 14
390
425
435
370
400 | 17
415
460
450
390
420
427 | 21
430
489
472
398
435
445 | 24
440
498
491
406
442
455 | 28
437
507
498
405
455
460 | | 24 116 | 325 360 | 379 | 383 | 400 | 417 | 428 | 440 | 440 | | 117 | 320 345 | 366 | 400 | 424 | 440 | 462 | 473 | 474 | | 118 | 300 330 | 364 | 395 | 420 | 445 | 474 | 498 | 515 | | 119 | 315 338 | 360 | 382 | 405 | 425 | 450 | 464 | 474 | | 120 | 310 340 | 356 | 392 | 415 | 435 | 460 | 480 | 488 | | Mean: | 314 343 | 365 | 390 | 413 | 432 | 455 | 471 | 478 | | Group size : | 10 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | Group mean : | 314 344 | 366 | 390 | 408 | 430 | 450 | 463 | 469 | | Mean change: | 30 | 22 | 24 | 18 | 21 | 20 | 13 | 6 | | Group 12male
Cage Rat
no.
25 121
122
123
124
125
Mean: | 0 3
300 317
307 330
322 330
322 350
324 348
315 335 | 7
346
336
352 | 10
353
357
376
372
391
370 | 14
365
365
382
375
415
380 | 17
368
384
390
390
430
392 | 21
395
418
415
427
468
425 | 24
395
410
416
412
480
423 | 28
402
417
421
407
487
427 | | 26 126 | 300 330 | 342 | 342 | 375 | 395
 410 | 426 | 435 | | 127 | 290 314 | 334 | 350 | 370 | 372 | 395 | 407 | 410 | | 128 | 344 380 | 384 | 415 | 437 | 455 | 470 | 478 | 491 | | 129 | 346 375 | 404 | 430 | 450 | 450 | 482 | 486 | 497 | | 130 | 298 300 | 323 | 355 | 368 | 385 | 410 | 412 | 412 | | Mean: | 316 340 | 357 | 378 | 400 | 411 | 433 | 442 | 449 | | Group size : | 10 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | Group mean : | 315 337 | 355 | 374 | 390 | 402 | 429 | 432 | 438 | | Mean change: | 22 | 18 | 19 | 16 | 12 | 27 | 3 | 6 | APPENDIX 3 Individual bodyweights (g) | Group 13 male
Cage Rat
no.
27 131
132
133
134
135
Mean: | 0
337
275
314
336
316
316 | Day
3
345
280
337
362
346
334 | 7
369
317
345
382
382
359 | 10
380
335
370
385
350
364 | 14
390
342
375
398
373
376 | 17
395
355
385
405
387
385 | 21
412
380
398
412
410
402 | 24
390
384
406
437
422
408 | 28
414
386
416
434
434 | |---|---|--|---|--|--|--|--|--|--| | 28 136
137
138
139
140
Mean: | 305
328
307
325
320
317 | 320
355
327
358
330
338 | 287
389
306
357
357
339 | 325
405
335
380
370
363 | 320
440
350
395
385
378 | 345
450
368
405
394
392 | 365
485
390
440
415
419 | 366
510
397
447
425
429 | 376
523
408
461
412
436 | | Group size :
Group mean :
Mean change: | 10
316 | 10
336
20 | 10
349
13 | 10
364
14 | 10
377
13 | 10
389
12 | 10
411
22 | 10
418
8 | 10
426
8 | | Group 1A femal
Cage Rat
no.
35 171
172
173 | 0
220
240
185 | Day
3
230
255
195 | 7
245
271
215 | 10
256
284
218 | 14
272
293
233 | 17
271
296
233 | 21
272
298
240 | 24
290
320
255 | 28
281
307
248 | | 174
175
Mean:
36 176 | 195
180
204
215 | 210
205
219
221 | 220
220
234
242 | 222
214
239
240 | 235
223
251
254 | 235
231
253
265 | 240
255
261
268 | 251
255
274
271 | 253
250
268
264 | | 177
178
179
180
Mean: | 200
180
230
210
207 | 222
185
245
225
220 | 240
200
272
245
240 | 249
214
280
261
249 | 256
220
290
262
256 | 258
228
306
270
265 | 272
240
321
275
275 | 276
241
320
285
279 | 280
235
319
278
275 | | Group size :
Group mean :
Mean change: | 10
206 | 10
219
14 | 10
237
18 | 10
244
7 | 10
254
10 | 10
259
6 | 10
268
9 | 10
276
8 | 10
272
-5 | | Group ¹¹ femal
Cage Rat | le | Day | | | | | | | | | no.
57 281
282
283
284
285
Mean: | 0
217
183
234
225
200
212 | 3
237
193
240
245
215
226 | 7
256
190
250
253
224
235 | 10
242
202
264
261
237
241 | 14
265
215
270
275
250
255 | 17
267
225
290
295
250
265 | 21
265
237
280
295
258
267 | 24
270
248
290
310
266
277 | 28
260
245
296
305
260
273 | | 58 286
287
288
289
290
Mean: | 200
222
188
210
212
206 | 210
235
198
250
230
225 | 223
239
200
261
233
231 | 236
250
214
274
251
245 | 257
255
222
280
259
255 | 263
275
240
300
265
269 | 258
275
230
295
265
265 | 265
286
248
306
275
276 | 260
290
240
295
275
272 | | Group size :
Group mean :
Mean change: | 10
209 | 10
225
16 | 10
233
8 | 10
243
10 | 10
255
12 | 10
267
12 | 10
266
-1 | 10
276
11 | 10
273
-4 | APPENDIX 3 Individual bodyweights (g) | | 12 fema | le | Day | | | | | | | | |-------------------------|--|---|---|---|--|--|---|--|--|---| | Cage | Rat | 0 | Day | | 10 | 7 .). | | | | | | 59 | no.
291 | 198 | 3
217 | 7 | 10 | 14 | 17 | 21 | 24 | 28 | | 29 | 291 | 212 | | 228 | 233 | 252 | 255 | 262 | 270 | 260 | | | 292 | 212 | 227
220 | 234 | 241 | 255 | 270 | 280 | 280 | 280 | | | | | | 226 | 233 | 245 | 262 | 262 | 265 | 267 | | | 294 | 200 | 205 | 207 | 210 | 215 | 220 | 225 | 231 | 228 | | | 295 | 214 | 225 | 225 | 240 | 246 | 260 | 270 | 268 | 260 | | | Mean: | 207 | 219 | 224 | 231 | 243 | 253 | 260 | 263 | 259 | | 60 | 296 | 220 | 244 | 232 | 248 | 250 | 262 | 250 | 262 | 275 | | | 297 | 220 | 230 | 230 | 243 | 250 | 260 | 252 | 268 | 255 | | | 298 | 195 | 210 | 211 | 226 | 230 | 250 | 242 | 255 | 285 | | | 299 | 194 | 215 | 223 | 232 | 245 | 240 | 260 | 253 | 230 | | | 300 | 198
205 | 200 | 202 | 212 | 222 | 220 | 230 | 240 | 240 | | | Mean: | 205 | 220 | 220 | 232 | 239 | 246 | 247 | 256 | 257 | | | size: | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | mean: | 206 | 219 | 222 | 232 | 241 | 250 | 253 | 259 | 258 | | Mean | change: | | 13 | 3 | 10 | 9 | 9 | 3 | 6 | -1 | | | | | | | | | | | | | | Groun | 13 fema | ما | | | | | | | | | | Group | | le | Day | | | | | | | | | Group
Cage | Rat | | Day | | 10 | 14 | 17 | 21 | 26 | 20 | | Cage | Rat
no. | 0 | 3 | 7 | 10
240 | 14
230 | 17
255 | 21
275 | 24
203 | 28
250 | | | Rat
no.
301 | 0
215 | 3
228 | 7
236 | 240 | 230 | 255 | 275 | 293 | 250 | | Cage | Rat
no.
301
302 | 0
215
185 | 3
228
197 | 7
236
196 | 240
199 | 230
210 | 255
210 | 275
216 | 293
226 | 250
225 | | Cage | Rat
no.
301
302
303 | 0
215
185
238 | 3
228
197
255 | 7
236
196
254 | 240 | 230 | 255 | 275 | 293 | 250 | | Cage | Rat
no.
301
302
303
304 | 0
215
185
238
200 | 3
228
197
255
214 | 7
236
196
254
204 | 240
199
265 | 230
210
268 | 255
210
270 | 275
216
274 | 293
226
281 | 250
225
235 | | Cage | Rat
no.
301
302
303
304
305 | 0
215
185
238
200
204 | 3
228
197
255
214
210 | 7
236
196
254
204
196 | 240
199
265
214 | 230
210
268
212 | 255
210
270
230 | 275
216
274
229 | 293
226
281
245 | 250
225
235
245 | | Cage
61 | Rat
no.
301
302
303
304
305
Mean: | 0
215
185
238
200
204
208 | 3
228
197
255
214
210
221 | 7
236
196
254
204
196
217 | 240
199
265
214
230 | 230
210
268
212
230 | 255
210
270
230
241 | 275
216
274
229
249 | 293
226
281
245
261 | 250
225
235
245
239 | | Cage | Rat
no.
301
302
303
304
305
Mean: | 0
215
185
238
200
204
208 | 3
228
197
255
214
210
221 | 7
236
196
254
204
196
217 | 240
199
265
214
230 | 230
210
268
212
230
228 | 255
210
270
230
241
240 | 275
216
274
229
249
231 | 293
226
281
245
261 | 250
225
235
245
239
255 | | Cage
61 | Rat
no.
301
302
303
304
305
Mean: | 0
215
185
238
200
204
208 | 3
228
197
255
214
210
221
233
230 | 7
236
196
254
204
196
217
236
235 | 240
199
265
214
230
232
234 | 230
210
268
212
230
228
240 | 255
210
270
230
241
240
240 | 275
216
274
229
249
231
220 | 293
226
281
245
261
250
196 | 250
225
235
245
239
255
212 | | Cage
61 | Rat
no.
301
302
303
304
305
Mean:
306
307
308 | 0
215
185
238
200
204
208
220
205
217 | 3
228
197
255
214
210
221
233
230
229 | 7
236
196
254
204
196
217
236
235
234 | 240
199
265
214
230 | 230
210
268
212
230
228 | 255
210
270
230
241
240 | 275
216
274
229
249
231 | 293
226
281
245
261 | 250
225
235
245
239
255 | | Cage
61 | Rat
no.
301
302
303
304
305
Mean:
306
307
308
309 | 0
215
185
238
200
204
208
220
205
217
185 | 3
228
197
255
214
210
221
233
230
229
168 | 7
236
196
254
204
196
217
236
235
234
193 | 240
199
265
214
230
232
234
243 |
230
210
268
212
230
228
240
255 | 255
210
270
230
241
240
240
257 | 275
216
274
229
249
231
220
265 | 293
226
281
245
261
250
196
273 | 250
225
235
245
239
255
212
270 | | Cage
61 | Rat
no.
301
302
303
304
305
Mean:
306
307
308
309
310 | 0
215
185
238
200
204
208
220
205
217
185
215 | 3
228
197
255
214
210
221
233
230
229
168
230 | 7
236
196
254
204
196
217
236
235
234
193
230 | 240
199
265
214
230
232
234
243 | 230
210
268
212
230
228
240
255 | 255
210
270
230
241
240
257
240 | 275
216
274
229
249
231
220
265 | 293
226
281
245
261
250
196
273
263 | 250
225
235
245
239
255
212
270
262 | | Cage
61 | Rat
no.
301
302
303
304
305
Mean:
306
307
308
309 | 0
215
185
238
200
204
208
220
205
217
185 | 3
228
197
255
214
210
221
233
230
229
168 | 7
236
196
254
204
196
217
236
235
234
193 | 240
199
265
214
230
232
234
243 | 230
210
268
212
230
228
240
255 | 255
210
270
230
241
240
240
257 | 275
216
274
229
249
231
220
265 | 293
226
281
245
261
250
196
273 | 250
225
235
245
239
255
212
270 | | Cage 61 62 Group | Rat
no.
301
302
303
304
305
Mean:
306
307
308
309
310
Mean: | 0
215
185
238
200
204
208
220
205
217
185
215
208 | 3
228
197
255
214
210
221
233
230
229
168
230
218 | 7
236
196
254
204
196
217
236
235
234
193
226 | 240
199
265
214
230
232
234
243
241
238 | 230
210
268
212
230
228
240
255
250
243 | 255
210
270
230
241
240
257
240
254
244
8 | 275
216
274
229
249
231
220
265
240
239 | 293
226
281
245
261
250
196
273
263
246 | 250
225
235
245
239
255
212
270
262
250
8 | | Group
Group
Group | Rat
no.
301
302
303
304
305
Mean:
306
307
308
309
310
Mean: | 0
215
185
238
200
204
208
220
205
217
185
215
208 | 3
228
197
255
214
210
221
233
230
229
168
230
218 | 7
236
196
254
204
196
217
236
235
234
193
230
226 | 240
199
265
214
230
232
234
243
241
238 | 230
210
268
212
230
228
240
255
250
243 | 255
210
270
230
241
240
240
257
240
244 | 275
216
274
229
249
231
220
265
240
239 | 293
226
281
245
261
250
196
273
263
246 | 250
225
235
245
239
255
212
270
262
250 | # 000846 # APPENDIX 4 #### Urinalysis - individual values Group: 1A Control 11 12 13 Compound: Level (mg/kg/day): _ 50 200 600 | [| Rat | Week | Vol- | | | Pro- | | Glu- | Ket- | | Uro- | | | Micro | scopy | • | | | |-------|---------------------------------|------|---------------------------------|---------------------------------|--------------------------------------|------------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------------|------------------|-----------------------------| | Group | No. | No. | ume
ml/rat | pН | SG | tein
mg% | red.
subs. | cose | ones | pig-
ments | bili-
nogen | Е | P | М | R | 0 | С | Α | | 1Aơ | 1
2
3
4
5 | 4 | 7.0
7.5
6.5
6.0
9.0 | 6.4
6.6
6.7
6.7
6.8 | 1036
1032
1035
1037
1032 | 20
40
80
100
100 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 1
0
1
0 | 0 0 0 0 | 0
0
0
0 | 0
0
0
0 | 3
2
2
2
2 | 0
0
0
0 | lsp
lsp
0
0
lsp | | 130 | 131
132
133
134
135 | 4 | 6.0
6.5
9.0
7.0
5.0 | 6.5
6.4
6.8
6.7
6.5 | 1048
1042
1036
1041
1046 | 50
40
30
10
20 | 0
tr
0
0 | 0
0
0
0 2
2
2
3
3 | 0
0
0
0 | 3sp
0
0
1sp | | 1A9 | 171
172
173
174
175 | 4 | 4.0
7.0
5.5
3.5
5.5 | 6.6
6.5
6.4
6.5
6.4 | 1034
1031
1030
1042
1034 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
1 | 0
0
1
0 | 0
0
0
0 | 0
0
0
0 | 1
2
2
2
1 | 0
0
0
0 | 0
0
0
0 | | 139 | 301
302
303
305
306 | 4 | 5.0
3.0
4.5
4.0
3.0 | 6.6
6.3
6.1
6.5
6.1 | 1045
1041
1036
1036
1047 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
1
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 1
1
1
1 | 0
0
0
0 | 0
0
0
0 | tr = trace sp = sperm # Haematology - individual values Group: 1 A 11 12 13 Compound: (b)(4) Level (mg/kg/day): Control 50 200 600 ₩eek | Group | Ani-
mal | PCV
% | Hb
g% | RBC
mill. | MCHC
% | MCV
Cµ | | W | BC (100 | 0/am) | | | Plate | Throm-
botest | |-------|-------------|----------|----------|--------------|-----------|-----------|-------|-----|---------|-------|-----|-----|----------------|------------------| | No. | no. | ^ | g, | /cmm | 70 | Cμ | Total | N | L | E | В | м | -lets
1000/ | secs | | | 110. | | | / Gna | | | 10181 | " | | _ | ١ | 171 | cmm | Secs | | 1Am | 1 | 46 | 14.0 | 7.4 | 30 | 62 | 14.2 | 2.6 | 11.6 | 0.0 | 0.0 | 0.0 | 400 | 25 | | - 1 | 2 | 45 | 13.8 | 7.4 | 31 | 61 | 14.7 | 1.5 | 12.5 | 0.6 | 0.0 | 0.0 | 420 | 29 | | - 1 | 3 | 47 | 14.8 | 7.6 | 31 | 62 | 15.6 | 1.5 | 14.0 | 0.0 | 0.0 | 0.0 | 450 | 27 | | - 1 | 4 | 48 | 15.0 | 7.6 | 31 | 63 | 15.2 | 1.2 | 13.4 | 0.3 | 0.0 | 0.3 | 540 | 27 | | l | 5 | 44 | 13.4 | 7.0 | 30 | 63 | 12.8 | 1.0 | 11.5 | 0.3 | 0.0 | 0.0 | 780 | 27 | | | 6 | 46 | 14.2 | 7.2 | 31 | 64 | 14.8 | 2.1 | 12.4 | 0.3 | 0.0 | 0.0 | 790 | 23 | | ŀ | 7 | 45 | 13.8 | 7.2 | 31 | 62 | 9.6 | 0.4 | 9.2 | 0.0 | 0.0 | 0.0 | 420 | 29 | | - 1 | 8 | 49 | 14.8 | 7.6 | 30 | 64 | 16.2 | 1.0 | 15.2 | 0.0 | 0.0 | 0.0 | 510 | 23 | | | 10 | 47 | 14.6 | 7.6 | 31 | 62 | 13.4 | 0.5 | 12.9 | 0.0 | 0.0 | 0.0 | 480 | 27 | | | Mean | 46 | 14.3 | 7.4 | 31 | 63 | 14.1 | 1.3 | 12.6 | 0.2 | 0.0 | 0.0 | 532 | 26 | | 11m | 111 | 48 | 14.9 | 7.6 | 31 | 63 | 18.6 | 2.6 | 15.6 | 0.0 | 0.0 | 0.0 | 560 | 27 | | 1 | 112 | 50 | 15.4 | 7.5 | 31 | 67 | 14.0 | 1.1 | 12.9 | 0.0 | 0.0 | 0.0 | 730 | 28 | | - | 113 | 51 | 15.2 | 7.6 | 30 | 67 | 11.6 | 1.2 | 10.4 | 0.0 | 0.0 | 0.0 | 450 | 26 | | | 114 | 47 | 14.6 | 7.5 | 31 | 63 | 10.8 | 0.2 | 10.5 | 0.0 | 0.0 | 0.0 | 340 | 26 | | 1 | 115 | 52 | 14.9 | 7.8 | 29 | 67 | 7.6 | 1.7 | 5.9 | 0.0 | 0.0 | 0.0 | 700 | 24 | | - 1 | 116 | 48 | 14.6 | 7.6 | 30 | 63 | 11.2 | 1.3 | 9.6 | 0.2 | 0.0 | 0.0 | 720 | 27 | | - 1 | 117 | 50 | 15.0 | 7.6 | 30 | 66 | 24.6 | 3.0 | 21.6 | 0.0 | 0.0 | 0.0 | 580 | 27 | | - 1 | 118 | 47 | 14.7 | 7.6 | 31 | 62 | 13.8 | 2.2 | 11.6 | 0.0 | 0.0 | 0.0 | 600 | 27 | | - 1 | 119 | 48 | 14.9 | 7.6 | 31 | 63 | 22.6 | 1.8 | 20.3 | 0.5 | 0.0 | 0.0 | 530 | 26 | | | 120 | 49 | 14.9 | 7.4 | 30 | 66 | 19.8 | 2.0 | 17.8 | 0.0 | 0.0 | 0.0 | 550 | 27 | | | Mean | 49 | 14.9 | 7.6 | 30 | 65 | 15.5 | 1.7 | 13.6 | 0.1 | 0.0 | 0.0 | 576 | 26 | | 12m | 121 | 47 | 14.7 | 7.3 | 31 | 64 | 16.4 | 2.0 | 14.4 | 0.0 | 0.0 | 0.0 | 750 | 24 | | - 1 | 122 | 48 | 14.9 | 8.0 | 31 | 60 | 12.2 | 1.5 | 10.7 | 0.0 | 0.0 | 0.0 | 880 | 32 | | l | 123 | 47 | 14.6 | 7.3 | 31 | 64 | 13.6 | 2.2 | 11.4 | 0.0 | 0.0 | 0.0 | 540 | 26 | | l | 124 | 49 | 14.8 | 7.6 | 30 | 54 | 9.8 | 0.6 | 9.2 | 0.0 | 0.0 | 0.0 | 530 | 25 | | | 125 | 48 | 14.8 | 7.4 | 31 | 65 | 8.4 | 1.0 | 7.2 | 0.2 | 0.0 | 0.0 | 610 | 28 | | | 126 | 48 | 15.1 | 7.4 | 31 | 65 | 9.8 | 1.4 | 8.4 | 0.0 | 0.0 | 0.0 | 860 | 31 | | | 127 | 48 | 15.0 | 8.0 | 31 | 60 | 13.4 | 1.3 | 12.1 | 0.0 | 0.0 | 0.0 | 640 | 26 | | | 128 | 49 | 14.8 | 7.6 | 30 | 64 | 18.0 | 2.9 | 15.1 | 0.0 | 0.0 | 0.0 | 660 | 26 | | | 129 | 46 | 14.6 | 7.6 | 32 | 61 | 13.8 | 0.6 | 13.2 | 0.0 | 0.0 | 0.0 | 460 | 26 | | | 130 | 47 | 14.7 | 7.6 | 31 | 62 | 7.6 | 0.9 | 6.5 | 0.2 | 0.0 | 0.0 | 660 | 27 | | | Mean | 48 | 14.8 | 7.6 | 31 | 63 | 12.3 | 1.4 | 10.8 | 0.0 | 0.0 | 0.0 | 659 | 27 | | 13m | 131 | 50 | 15.4 | 7.8 | 31 | 64 | 20.4 | 2.0 | 18.4 | 0.0 | 0.0 | 0.0 | 580 | 30 | | | 132 | 46 | 14.6 | 7.4 | 32 | 62 | 14.0 | 2.0 | 11.8 | 0.3 | 0.0 | 0.0 | 490 | 30 | | | 133 | 48 | 14.8 | 7.8 | 31 | 62 | 17.0 | 1.0 | 16.0 | 0.0 | 0.0 | 0.0 | 540 | 23 | | | 134 | 48 | 14.8 | 7.8 | 31 | 62 | 15.4 | 1.2 | 14.2 | 0.0 | 0.0 | 0.0 | 480 | 26 | | | 135 | 46 | 14.5 | 7.4 | 32 | 62 | 14.6 | 1.2 | 13.4 | 0.0 | 0.0 | 0.0 | 420 | 26 | | ļ | 136 | 46 | 14.6 | 7.4 | 32 | 62 | 13.6 | 1.4 | 12.2 | 0.0 | 0.0 | 0.0 | 580 | 26 | | 1 | 137 | 44 | 13.5 | 7.1 | 31 | 62 | 11.8 | 1.2 | 10.6 | 0.0 | 0.0 | 0.0 | 510 | 28 | | | 138 | 47 | 14.6 | 7.7 | 31 | 61 | 11.9 | 1.2 | 10.7 | 0.0 | 0.0 | 0.0 | 880 | 28 | | į | 139 | 48 | 14.8 | 7.6 | 31 | 63 | 17.4 | 2.4 | 15.0 | 0.0 | 0.0 | 0.0 | 750 | 27 | | | 140 | 47 | 14.6 | 7.7 | 31 | 61 | 16.8 | 0.3 | 16.5 | 0.0 | 0.0 | 0.0 | 790 | 27 | | | | | | | | | | | | | | | | | (continued) | 1.10 | ek | L L | |------|----|-----| | | | | | Group
No. | 1 1 | | MCV
CH | | W | BC (100 | 0/cmm) |
 | Plate | Thron- | | | | |--------------|--|--|--|--|--|--|---|--|---|--|---|--|--|--| | NO. | no. | <i>*</i> | 5.A | /cmm | , P | | Total | N | L | Ε | В | М | -lets
1000/
cmm | botest
secs. | | lAf | 171
172
173
174
175
176
177
178
179
180 | 45
42
43
43
45
45
45
45 | 13.8
12.9
13.0
12.8
13.3
13.4
13.9
14.6
14.6 | 7.4
6.8
6.8
7.0
7.0
6.9
7.2
7.5
7.7 | 31
31
30
31
31
31
31
32
31 | 61
62
62
61
61
62
62
62
62
60
61 | 7.9
10.6
10.6
8.6
9.6
17.6
9.0
11.6
9.8 | 0.3
0.6
0.6
0.3
1.0
0.4
0.5
0.2
0.6
0.4 | 7.6
10.0
10.0
8.3
8.6
16.9
8.5
11.4
9.2
10.2 | 0.0
0.0
0.0
0.0
0.4
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 910
760
650
740
920
750
640
580
700 | 25
27
22
24
25
31
29
22
24
23 | | | Mean | 44 | 13.6 | 7.2 | 31 | 61 | 10.6 | 0.5 | 10.1 | 0.0 | 0.0 | 0.0 | 736 | 25 | | 11f | 281
282
283
284
285
286
287
288
289
290 | 47
47
47
47
46
44
47
48
47 | 14.3
14.4
14.6
14.4
14.6
14.6
14.6
14.6 | 7.3
7.4
7.3
7.4
7.3
7.4
7.2
7.4
7.3
7.2 | 30
31
31
31
32
31
30
31 | 64
64
64
64
62
61
64
66
65 | 7.6
8.6
8.0
8.4
10.8
9.8
10.6
7.6
11.6
9.8 | 0.6
0.5
0.6
1.0
1.3
1.8
2.5
0.9
0.6 | 7.0
8.1
7.2
7.2
9.3
7.8
8.1
6.5
10.2
8.8 | 0.0
0.0
0.2
0.2
0.2
0.2
0.0
0.2
0.5
0.4 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 530
450
440
600
600
530
640
610
700
420 | 25
27
24
26
27
27
27
29
30
25 | | | Mean | 47 | 14.4 | 7.3 | 31 | 64 | 9.3 | 1.1 | 8.0 | 0.2 | 0.0 | 0.0 | 552 | 27 | | 12f | 291
292
293
294
295
296
297
298
299
300 | 48
45
45
45
45
46
47
43 | 14.9
13.6
14.9
13.6
14.0
13.4
14.6
14.6 | 8.0
7 2
7.1
7.8
7.2
7.2
7.1
7.3
7.6
7.3 | 31
30
30
31
30
31
30
32
31
30 | 60
62
63
62
62
62
62
63
62
59 | 15.0
14.4
7.3
15.2
13.6
13.4
11.8
14.6
11.6 | 1.8
0.9
1.0
0.9
1.1
1.6
1.4
1.5 | 12.9
13.5
6.1
14.3
12.5
11.8
10.1
12.8
10.2
15.5 | 0.3
0.0
0.1
0.0
0.0
0.0
0.2
0.3
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 770
900
680
820
740
710
600
880
680
620 | 24
26
26
26
25
26
28
25
23
23 | | | Mean | 46 | 14.0 | 7.4 | 31 | 62 | 13.3 | 1.2 | 12.0 | 0.1 | 0.0 | 0.0 | 740 | 25 | | 13f | 301
302
303
305
306
307
308
310 | 46
46
45
40
44
50
45 | 14.6
14.7
13.8
12.0
13.8
15.2
14.9
13.7 | 7.5
7.7
7.5
6.5
7.0
7.8
7.5
7.4 | 32
32
31
30
31
30
30 | 61
60
62
63
64
65 | 11.6
12.6
14.6
11.9
14.9
17.6
15.6 | 0.2
0.8
1.2
1.0
0.6
4.2
1.6
1.5 | 11.4
11.6
13.4
10.9
14.3
13.0
14.0 | 0.0
0.3
0.0
0.0
0.0
0.4
0.0 | 0.0
0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 770
640
790
910
600
690
610
730 | 27
25
26
29
25
32
29
26 | | | Mean | 46 | 14.1 | 7.4 | 31 | 62 | 14.0 | 1.4 | 12.5 | 0.1 | 0.0 | 0.0 | 717 | 27 | #### Blood Chemistry - Individual values Group: 1A 11 12 13 Compound: (b) (4 Level (mg/kg/day): Control 50 200 600 Week 4 | | | | r | | | |-------|---------|-------|------|-------|-------| | Group | Ani- | Urea | Glu- | SAP | SGPT | | No. | mal | mg% | cose | KA | SF | | 140. | 1 - 1 | 116,0 | | | | | | no. | | mg% | units | units | | 1Am | 1 | 46 | 121 | 67 | 36 | | | 2 | 43 | 121 | 94 | 34 | | | 3 | 40 | 132 | 105 | 39 | | | 4 | 40 | 122 | | 31 | | | | | | 92 | | | | 5 | 45 | 122 | 106 | 28 | | | 6 | 44 | 110 | 94 | 27 | | | 7 | 37 | 141 | 62 | 35 | | | 8 | 43 | 132 | 67 | 31 | | | 10 | 43 | 145 | 69 | 40 | | | Mean | 42 | 127 | 84 | 33 | | 11m | 111 | 42 | 123 | 90 | 35 | | TTH | - | | | | | | | 112 | 42 | 147 | 81 | 28 | | | 113 | 40 | 124 | 74 | 31 | | | 114 | 33 | 137 | 81 | 36 | | | 115 | 40 | 138 | 69 | 29 | | | 116 | 31 | 134 | 71 | 35 | | | 117 | 32 | 128 | 74 | 37 | | | 118 | 54 | 135 | 85 | 45 | | | 119 | 40 | 132 | 48 | 40 | | | 120 | 44 | 136 | 71 | 57 | | | Mean | 40 | 133 | 74 | 37 | | | | | | | | | 12m | 121 | 41 | 117 | 91 | 36 | | | 122 | 36 | 118 | 77 | 36 | | | 123 | 34 | 139 | 72 | 37 | | | 124 | 39 | 117 | 72 | 39 | | | 125 | 41 | 120 | 70 | 41 | | | 126 | 32 | 110 | 78 | 45 | | | 127 | 39 | 135 | 86 | 43 | | | | | | | 55 | | | 128 | 32 | 142 | 99 | | | | 129 | 33 | 133 | 68 | 41 | | | 130 | 30 | 140 | 63 | 46 | | | Mean | 36 | 127 | 78 | 42 | | 13m | 131 | 32 | 154 | 51 | 39 | | 4,5 | 132 | 32 | 115 | 51 | 42 | | | 133 | 42 | 127 | 90 | 48 | | | | | 146 | 74 | 41 | | | 134 | 33 | | | | | | 135 | 34 | 134 | 74 | 31 | | | 136 | 38 | 130 | 46 | 37 | | | 137 | 39 | 133 | 83 | 33 | | | 138 | 34 | 128 | 74 | 32 | | | 139 | 32 | 160 | 64 | 28 | | | 140 | 33 | 138 | 76 | 35 | | | Mean | 35 | 136 | 68 | 37 | | | <u></u> | L | 1 | ! | J | APPENDIX 6 (continued) Week 4 | week | 4 | | | | | |--------------|--|--|--|--|--| | Group
No. | Ani-
mal
no. | Urea
mg% | Glu-
cose
mg% | SAP
KA
units | SGPT
SF
units | | lAf | 171
172
173
174
175
176
177
178
179
180 | 33
46
46
37
46
36
39
32
38
33 | 133
128
119
114
136
135
120
122
146
128 | 60
55
64
76
83
64
83
87
67 | 36
39
45
38
31
41
55
39
37 | | | Mean | 39 | 128 | 71 | 40 | | 11f | 281
282
283
284
285
286
287
288
289
290 | 36
38
44
48
35
35
43
43
43 | 123
110
139
124
130
137
137
135
116 | 51
62
50
51
39
55
58
48 | 38
37
35
50
46
41
40
40
41 | | | Mean | 40 | 128 | 53 | 40 | | 12f | 291
292
293
294
295
296
297
298
299
300 | 36
32
37
33
38
40
40
33
44 | 93
123
115
107
105
109
134
97
114 | 53
70
68
72
65
53
81
72
70 | 28
35
41
40
40
40
41
37
45 | | | Mean | 37 | 111 | 56 | 40 | | 13f | 301
302
303
305
306
307
308
310 | 36
37
31
30
37
44
45 | 124
126
136
144
128
130
132
116 | 58
81
55
53
90
48
127
122 | 36
31
35
30
25
29
41
46 | | | Mean | 38 | 129 | 79 | 34 | APPENDIX 7 Ophthalmoscopy ~ individual observations Group: 1A 11 12 13 Compound: - (b) (4) Level (mg/kg/day): Control 50 200 600 | Group | Week | Rat
No | Eve | Observation | |-------|------|-------------|-------------|--| | 1Aď | 0 | 6,9 | В | Suture lines | | 114 | | 112,118 | В | Suture lines | | 120* | | 121,129 | В | Suture lines | | 130 | | 134,137 | В | Suture lines | | | | | | | | 1A♀̂ | | 172
180 | B
L | Suture lines
Conjunctivitis | | 112 | | 249 | В | Suture lines | | 129 | | - | - | - | | 139 | | - | - | - | | | | | | | | 1Ac* | 4 | 6
7
9 | R
L
B | Suture lines
Hyaloid remnant with blood
Suture lines | | 113 | | 111,113 | В | Suture lines | | 123 | | 121
125 | L
R | Suture line
Hyaloids | | 130 | | 135
138 | B/L
B | Suture lines/Post. polar opacity
Suture lines | | | | | | | | 1A9 | | - | - | - | | 112 | | 285 | R | Post. polar opacity | | 129 | | - | - | - | | 139 | | - | - | - | \neq R = right, L = left, B = both : 31 : # Macroscopic pathology - individual observations in rats sacrificed at 4 weeks Group: 1A 11 12 13 Compound: - (b) (4) Level (mg/kg/day): Control 50 200 600 | Group | Rat
No | Observations | |-------|-----------------|---| | 1Ac | 1 | No abnormality is detected. | | | 2 | <u>Lungs</u> : Occasional subpleural punctate grey green foci. | | | 3 | Lungs: Occasional subpleural punctate grey green foci. | | | 4,5 | No abnormality is detected. | | | 6 | Lungs: Occasional subpleural punctate grey green foci. | | | 7 | No abnormality is detected. | | | 8 | Lungs: Occasional subpleural grey
green foci 1mm diameter. | | | 10 | <u>Lungs:</u> Occasional subpleural punctate grey green foci on costal surface of right posterior lobe. | | 113 | 111 | No abnormality is detected. | | | 112 | Lungs: Anterior border of right posterior lobe consolidated. | | | 113,114,115,116 | No abnormality is detected. | | | 117 | Lungs: Occasional subpleural punctate grey green foci. | | | 118 | Kidneys: Minimal bilateral cortical scarring. | | | 119,120 | No abnormality is detected. | | 120 | 121 | No abnormality is detected. | | | 122 | Lungs: Scattered subpleural punctate grey green foci. | | | 123 | Lungs: Occasional subpleural punctate grey green foci. | | | 124, 125 | No abnormality is detected. | | | 126 | Lungs: Occasional subpleural punctate grey foci left lobe. | | | 127 | Lungs: Occasional subpleural punctate grey green foci. | | | | | | Group | Rat
No | <u>Observations</u> | | | | | | | |--------|-----------|--|--|--|--|--|--|--| | 120 | 128 | Small Intestine: Gaseous distension. | | | | | | | | (cont) | 129 | No abnormality is detected. | | | | | | | | | 130 | <u>Lungs</u> : Occasional subpleural punctate grey green foci. | | | | | | | | 138 | 131 | No abnormality is detected. | | | | | | | | | 132 | Lungs: Right middle lobe consolidated. | | | | | | | | | | <u>Small Intestine</u> : Gaseous distension. | | | | | | | | | 133,134 | No abnormality is detected. | | | | | | | | | 135 | Lungs: Occasional subpleural grey green foci 1mm diameter. | | | | | | | | | 136 | Small Intestine: Gaseous distension. | | | | | | | | • | 137 | No abnormality is detected. | | | | | | | | | 138 | Lungs: Occasional subpleural punctate grey green foci. | | | | | | | | | 139,140 | No abnormality is detected. | | | | | | | | Group | <u>Rat</u>
No | Observations | |-------|---------------------|--| | lΑQ | 171,172 | No abnormality is detected. | | | 173 | Lungs: Occasional subpleural punctate grey green foci. | | | 174,175,176 | No abnormality is detected. | | | 177 | Lungs: Occasional subpleural punctate grey green foci. | | | 178 | No abnormality is detected. | | | 179 | <u>Lungs</u> : Azygos lobe collapsed. Occasional subpleural punctate grey green foci. All lobes. | | | | Small Intestine: Ileum: Jejunum: Pale. | | | 180 | <u>Lungs</u> : Occasional subpleural punctate grey green foci. | | | | Small Intestine: Ileum: Jejunum: Pale | | 119 | 281,282 | No abnormality is detected. | | | 283 | Lungs: Scattered subpleural punctate grey green foci. | | | 284 | Lungs: Occasional subpleural punctate grey green foci. | | | 285 | <u>Lungs</u> : Scattered subpleural grey green foci 1mm diameter. | | | 286 | <u>Lungs</u> : Scattered subpleural punctate grey green foci. | | | 287 | No abnormality is detected. | | | 288 | Lungs: Scattered subpleural punctate grey green foci. | | | 289,290 | No abnormality is detected. | | 129 | 291,292,293,
294 | No abnormality is detected. | | | 295 | Lungs: Scattered subpleural punctate grey green foci. | | | 296 | No abnormality is detected. | | | 297 | Lungs: Occasional subpleural punctate grey green foci. | | | 298,299 | No abnormality is detected. | | | 300 | Small Intestine: Gaseous distension. | | Group | <u>Rat</u>
No | <u>Observations</u> | |---------|----------------------------|---| | 139 | 301 | Lungs: Scattered subpleural punctate grey green foci. | | (cont.) | 302 | Lungs: Scattered subpleural punctate grey green foci. | | | 303,305,306
307,308,310 | No abnormality is detected. | Organ weights (absolute) - individual values for rats sacrificed at 4 weeks Group: 1A 11 Compound: 12 Level (mg/kg/day): Control 50 200 600 | | ***** | | 1-1-5-5-4 | 4444 | | 11111 | | | |-------------|-----------------------|-------------|-----------|-------|--------------|------------|----------|------------| | Group | Rat | Body | Brain | Heart | Liver | Kidney | Adrenal | Gonad | | No. | No. | wt. | | | | | | | | | 11111 | | | | | | mg | | | 1Am | 1 | 475 | 1.9 | 1.6 | 19.0 | 3.8 | 60 | 4.8 | | | 2
3
4
5
6 | 483 | 1.8 | 1.4 | 23.5 | 4.0 | 75 | 4.8 | | | 3 | 432 | 2.0 | 1.4 | 20.2 | 3.7 | 57 | 4.7 | | 1 | 4 | 450 | 2.0 | 2.4 | 18.7 | 4.0 | 77 | 5.2 | | 1 | 5 | 488 | 2.2 | 1.5 | 25.4 | 4.6 | 65 | 6.2 | | - 1 | | 505 | 1.9 | 1.6 | 25.0 | 4.4 | 56 | 4.7 | |] | 7
8 | 471
432 | 2.0 | 1.5 | 19.9 | 4.0 | 58
62 | 5.0 | | . | 10 | 412 | 1.8 | 1.4 | 18.8
21.6 | 3.6
3.7 | 65 | 4.8 | | | Mean | 461 | 2.0 | 1.6 | 21.3 | 4.0 | 64 | 4.9 | | 11m | 111 | 447 | 1.9 | 1.2 | 24.3 | 4.1 | 61 | 5.2 | | 12 | 112 | 519 | 2.0 | 1.6 | 25.0 | 4.3 | 85 | 4.8 | | | 113 | 508 | 1.9 | 2.5 | 24.8 | 4.3 | 65 | 5.0 | | | 114 | 418 | 1.9 | 1,2 | 19.3 | 3.3 | 50 | 4.8 | | 1 | 115 | 464 | 2.0 | 1.6 | 23.4 | 4.0 | 70 | 5.1 | | | 116 | 432 | 2.0 | 1.8 | 20.0 | 3.5 | 62 | 4.9 | | - | 117 | 467 | 2.0 | 1.5 | 21.2 | 3.7 | 68 | 5.1 | | | 118 | 509 | 2.0 | 1.5 | 21.6 | 3.8 | 55 | 4.9 | | | 119 | 470 | 1.8 | 1.5 | 22.5 | 3.3 | .75 | 4.8 | | | 120 | 477 | 1.9 | 1.5 | 22.3 | 3.8 | 60 | 4.9 | | | Mean | 471 | 1.9 | 1.6 | 22.4 | 3.8 | 65 | 4.9 | | 12m | 121 | 408 | 1.7 | 1.2 | 19.1 | 3.3 | 80 | 4.3 | | | 122 | 422 | 2.0 | 1.5 | 18.0 | 3.4 | 65 | 5.0 | | | 123 | 415 | 2.0 | 1.5 | 20.6 | 3.5 | 75 | 4.6 | | | 124 | 419 | 2.0 | 1.6 | 17.2 | 3.3 | 72 | 5.3 | | | 125 | 482 | 2.0 | 1.6 | 22.9 | 3.9 | 74 | 5.2
5.4 | | | 126 | 435 | 1.9 | 1.7 | 20.4 | 3.5 | 65
74 | 5.4 | | | 127
128 | 416
482 | 2.0 | 1.7 | 20.1
18.2 | 3.6
3.7 | 62 | 5.2 | | | 129 | 492 | 2.0 | 2.0 | 21.6 | 4.1 | 70 | 5.0 | | | 130 | 411 | 2.0 | 1.5 | 18.1 | 3.2 | 48 | 4.7 | | **** | Mean | 438 | 2.0 | 1.6 | 19.6 | 3.5 | 69 | 5.0 | | 13m | 131 | 402 | 1.9 | 1.4 | 16.2 | 3.6 | 71 | 4.6 | | | 132 | 374 | 1.8 | 1.3 | 16.3 | 2.8 | 71 | 4.3 | | | 133 | 410 | 2.0 | 1.3 | 15.5 | 3.2 | 78 | 4.6 | | | 134 | 422 | 2.1 | 1.5 | 20.0 | 4.0 | 82 | 4.6 | | | 135 | 430 | 2.0 | 1.4 | 18.4 | 3.1 | 54 | 4.4 | | | 136 | 368 | 1.9 | 1.4 | 15.4
19.0 | 2.9
3.8 | 87
82 | 3.8
4.8 | | . | 137
138 | 510
395 | 2.1 | 1.4 | 18.2 | 3.2 | 67 | 4.6 | | | 139 | 449 | 2.0 | 1.7 | 24.2 | 3.9 | 87 | 5.2 | | | 140 | 407 | 1.9 | 1.6 | 19.8 | 3.4 | 63 | 4.5 | | | 123111 | | | | | | | | APPENDIX 9 | _ | roup | Rat | * 1 | Brain | Heart | Liver | Ki dney | Adrenal | |---|------|--|--|---|--|--|--|--| | , | No. | No. | wt. | | | | | mg | | | lBf | 171
172
173
174
175
176
177
178
179
180 | 276
306
245
250
244
259
277
231
316
270 | 1.8
1.8
1.8
1.8
1.7
1.8
1.7 | 1.1
1.2
1.0
0.9
0.9
1.0
1.1
0.9 | 12.8
13.6
12.1
11.4
10.0
13.2
11.3
10.0
13.7
11.4 | 2.1
2.3
1.8
2.3
1.9
2.3
2.3
2.0
2.5
2.4 | 80
108
80
86
86
77
78
96
107
84 | | | | Mean | 267 | 1.8 | 1.0 | 11.9 | 2.2 | 88 | | 1 | 1f | 281
282
283
284
285
286
287
288
289 | 272
246
300
308
277
268
290
238
312
281 | 1.9
1.8
1.9
2.0
1.9
1.9
1.9 | 1.2
0.9
1.2
1.0
1.1
1.1
1.0
1.2 | 13.1
11.0
15.6
13.2
11.4
11.2
11.8
9.5
13.4
15.5 | 2.4
1.8
2.0
2.4
1.9
2.2
2.2
1.8
2.5
2.4 | 84
85
86
110
62
80
76
80
72 | | | | Mean | 279 | 1.9 | 1.1 | 12.6 | 2.2 | 82 | | 1 | 2f | 291
292
293
294
295
296
297
298
299
300 | 260
280
258
226
262
275
253
282
230
231 | 1.8
1.9
1.8
1.7
1.8
1.9
1.9 | 1.0
1.0
0.8
1.0
1.1
1.0
0.9 | 9.9
12.5
10.3
8.6
10.6
13.6
12.2
12.6
9.8
11.0 | 2.1
2.5
1.9
1.8
2.0
2.9
2.2
2.8
1.7
2.0 | 67
9.2
90
70
76
91
98
100
70 | | | | Mean | 256 | 1.8 | 1.0 | 11.1 | 2.2 | 84 | | | l3f | 301
302
303
305
306
307
308
310 | 252
222
238
238
250
212
266
259 | 1.8
1.7
1.9
1.7
1.8
1.6
1.7 | 1.1
0.8
1.1
1.1
0.9
0.9
0.9 | 11.6
10.5
11.0
10.9
12.7
10.1
9.6
11.5 | 2.2
1.9
2.0
2.0
2.3
2.1
1.9
2.2 | 62
75
100
74
83
82
93 | | | | Mean | 242 | 1.8 | 1.0 | 11.0 | 2.1 | 82 | # Organ weights (relative⁺) - individual values for rats sacrificed at 4 weeks 1A 11 12 1 Group: 13 Compound: | Level (mg/kg/day): Control 50 | | | | | | 200 600 | | | | |-------------------------------|--|--|--|--|--|--|---|--|--| | [| | | | | | | | | | | No. | No. | wt. | Brain | neart | Liver | Kidney | Adrenai | Gonads | | | 1Am | 1
2
3
4
5
6
7
8 | 475
483
432
450
488
505
471
432
412 | 40
37
46
44
45
38
42
42
49 | 34
29
32
53
31
32
32
32
36 | 400
487
468
416
520
495
423
435
524 |
80
83
86
89
94
87
85
83 | 1.3
1.6
1.3
1.7
1.3
1.1
1.2
1.4 | 101
99
109
116
127
93
106
111 | | | | Mean . | 461 | 43 | 35 | 463 | 86 | 1.4 | 107 | | | 11m | 111
112
113
114
115
116
117
118
119
120 | 447
519
508
418
464
432
467
509
470
477 | 43
39
37
45
43
46
43
39
38
40 | 27
31
51
29
34
42
32
29
32
31 | 544
482
488
462
504
463
454
479
468 | 92
83
85
79
86
81
79
75
70
80 | 1.4
1.6
1.3
1.2
1.5
1.4
1.5
1.1 | 116
92
98
115
110
113
109
96
102
103 | | | | Mean. | 471 | 41 | 34 | 477 | 81 | 1.4 | 106 | | | 12m | 121
122
123
124
125
126
127
128
129
130 | 408
422
415
419
482
435
416
482
492
411 | 42
47
48
48
41
44
48
46
41 | 29
36
36
38
33
39
41
35
41 | 468
427
496
411
475
469
483
378
439
440 | 81
84
79
81
80
87
77
83
78 | 2.0
1.5
1.8
1.7
1.5
1.5
1.3
1.4 | 105
118
111
126
108
124
125
108
102
114 | | | | Mean | 438 | 45 | 36 | 449 | 81 | 1.6 | 114 | | | 13m | 151
132
133
134
135
136
137
138
139 | 402
374
410
422
430
368
510
395
449
407 | 47
48
49
50
47
52
41
48
47 | 35
35
32
36
33
38
31
35
38 | 403
436
378
474
428
418
373
461
539
486 | 90
75
78
95
72
79
75
81
87
84 | 1.8
1.9
1.9
1.9
1.3
2.4
1.6
1.7
1.9 | 114
115
112
109
102
103
94
116
116 | | | | Mean | 417 | 47 | 35 | 440 | 81 | 1.8 | 109 | | | | | | | | | | | | | APPENDIX 10 | Group
No. | Rat
No. | Body
wt.
(g) | Brain | Heart | Liver | Kidney | Adrenal | |--------------|--|--|--|--|--|--|---| | lBf | 171
172
173
174
175
176
177
178
179 | 276
306
245
250
244
259
277
231
316 | 65
59
73
72
74
66
65
74 | 40
39
41
36
37
39
40
39 | 464
444
494
456
410
510
408
433
434 | 76
75
73
92
78
89
83
87 | 2.9
3.5
3.3
3.4
3.5
3.0
2.8
4.2
3.4 | | | 180 | 270 | 67 | 41
39 | 422
447 | 89 | 3.1 | | | Mean. | 267 | 67 |) 99
 | 447 | 82 | 3.3 | | 11f | 281
282
283
284
285
286
287
288
289
290 | 272
246
300
308
277
268
290
238
312
281 | 70
73
63
65
69
71
66
80
61
64 | 44
37
40
32
40
41
34
50
32 | 482
447
520
429
412
418
407
399
429
552 | 88
73
67
78
69
82
76
76
80
85 | 3.1
3.5
2.9
3.6
2.2
3.0
2.6
3.4
2.3 | | | Mean: | 279 | 68 | 39 | 449 | 77 | 3.0 | | 12f | 291
292
293
294
295
296
297
298
299
300 | 260
280
258
226
262
275
253
282
230
231 | 69
68
70
75
69
65
75
67
74
78 | 38
36
39
35
38
40
40
39
43 | 381
446
399
381
405
495
482
447
426
476 | 81
89
74
80
76
105
87
99
74 | 2.6
3.3
3.5
3.1
2.9
3.3
3.9
3.5
3.0 | | | Mean. | 256 | 71 | 39 | 434 | 85 | 3.3 | | 13f | 301
302
303
305
306
307
308
310 | 252
222
238
238
250
212
266
259 | 71
77
80
71
72
75
64
73 | 44
36
46
46
36
42
34
39 | 460
473
462
458
508
476
361
444 | 87
86
84
84
92
99
71
85 | 2.5
3.4
4.2
3.0
4.2
3.1
3.6 | | | Mean [.] | 242 | 73 | 40 | 455 | 86 | 3.4 | # Histology - Individual observations in rats sacrificed at 4 weeks Group: 1A 11 12 13 Compound: - (b) (4) Level (mg/kg/day): Control 50 200 600 The following organs were weighed: Pancreas* Liver Adrenals Testes Brain Kidney Heart Samples of the following tissues from all rats were preserved in 10% buffered formalin: Adrenals Pituitary* Aorta* Prostate* Salivary gland* Body fat* Brain* Sciatic nerve* Caecum* Seminal vesicles* Colon* Skeletal muscle* Duodenum* Skin* Eves* Spleen Femur* Stomach* Heart Testes Ileum* Thymus* Tejunum* Thyroids Kidnevs Trachea* Liver Tongue* Lung* Urinary bladder Lymph nodes* Uterus* Mammary gland* Any abnormal tissue Oesophagus* Ovaries* Femoral marrow smears were prepared and fixed in methyl alcohol. Tissues marked thus* were preserved but not processed further in the first instance. Tissues for histopathological examination were fixed from 1-2 weeks in 10% buffered formalin, routinely processed in $56^{\circ}C$ M.P. paraffin wax, sectioned at 5μ and stained with haematoxylin and eosin. (continued) GROUP 1Ad Rat 1 Spleen: Small foci of extra-medullary haemopoiesis are noted. Vacuolated and occasional distended hepatocytes are Liver: noted in the centrilobular areas. Kidney: Small groups of tubules characterized by their basophilic staining, a proportion of which are seen to be distended and contain eosinophilic material are seen in association with minimal mononuclear cell infiltration of the cortex. Rat 2 Liver: Occasional small foci of mononuclear cell infiltration are noted in the parenchyma. Vacuolated hepatocytes are seen in centrilobular areas. Foci of extra-medullary haemopoiesis are noted. Spleen; Rat 3 Liver: Occasional vacuolated hepatocytes are noted in centrilobular areas. Rat 4 Liver: Vacuolated hepatocytes are noted in centrilobular areas. Kidney: Occasional small groups of tubules characterized by their basophilic staining, a proportion of which are seen to be distended and to contain granular eosinophilic material are seen in association with minimal mononuclear cell infiltration of the cortex. Urinary bladder: An eosinophilic plug is seen in the lumen. Rat 5 Heart: Small foci of mononuclear cell infiltration are noted in the ventricular musculature. Spleen: Occasional foci of extra-medullary haemopoiesis are noted. distended. Vacuolated hepatocytes are seen in centrilobular areas. The majority of seminiferous tubules in one testis are Liver: Testes: #### (continued) Rat 6 Heart: A focus of mononuclear cell infiltration is seen in the ventricular musculature. Liver: Occasional vacuolated hepatocytes are noted in centrilobular areas. Spleen: Foci of extra-medullary haemopoiesis are noted. Rat 7 Spleen: Foci of extra-medullary haemopolesis are noted. Liver: Occasional vacuolated hepatocytes are seen in centrilobular areas. Urinary bladder: An eosinophilic plug is noted in the lumen. Rat 8 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. <u>Rat 10</u> Liver: Vacuolated and distended hepatocytes are prominent in centrilobular areas. #### (continued) #### GROUP 13d Rat 131 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 132 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 133 Spleen: Foci of extra-medulary haemopoiesis are noted. Liver: Occasional vacuolated hepatocytes are noted in centrilobular areas. Kidney: Minimal mononuclear cell infiltration is noted in the cortex. Rat 134 Liver: Vacuolated hepatocytes are seen in centrilobular areas. Small foci of mononuclear cell infiltration are noted in the parenchyma. Rat 135 Liver: Vacuolated hepatocytes are noted in centrilobular areas. Kidney: Small groups of tubules that are characterised by their basophilic staining are noted in the cortex. #### (continued) Rat 136 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Kidney: Occasional small groups of tubules characterized by their basophilic staining are seen in association with minimal mononuclear cell infiltration of the cortex. Rat 137 Liver: Occasional vacuolated hepatocytes are noted in centrilobular areas. Rat 138 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Vacuolated hepatocytes are seen in centrilobular areas. Rat 139 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Vacuolated hepatocytes are noted in occasional centrilobular areas. <u>Rat 140</u> Liver: Vacuolated hepatocytes are seen in centrilobular areas. Kidney: Occasional small groups of tubules characterized by their basophilic staining, a proportion of which are distended with eosinophilic material, are seen in association with minimal mononuclear cell infiltration of the cortex. #### (continued) ## GROUP 1A9 Rat 171 Spleen: Occasional foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 172 Liver. Occasional vacuolated hepatocytes are noted in centrilobular areas. Rat 173 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Small foci of mononuclear cell infiltration are noted in the parenchyma. Rat 174 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 175 Spleen: Occasional foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 176 Liver: Hepatic architecture within normal limits. Parathyroid: A telanglectatic focus is seen in one gland. Rat 177 Spleen: Occasional foci of extra-medullary haemopoiesis
are noted. Liver: Hepatic architecture within normal limits. #### (continued) Rat 178 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. <u>Rat 179</u> Liver: Occasional small lymphoid foci are noted in the parenchyma. Rat 180 Liver: Hepatic architecture within normal limits. #### (continued) #### GROUP 13? Rat 301 Spleen: Occasional foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 302 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 303 Heart: Small foci of mononuclear cell infiltration are noted in the ventricular myocardium. Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 305 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Rat 306 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Occasional small foci of mononuclear cell infiltration are noted in the parenchyma. Rat 307 Spleen: Occasional macrophages containing brown pigment are noted. Liver: Hepatic architecture within normal limits. #### APPENDIX [1 #### (continued) Rat 308 Spieen: Foci of extra-medullary haemopoiesis are noted. Liver: Hepatic architecture within normal limits. Kidney: Occasional tubules, which are characterized by their basophilic staining are seen in association with minimal mononuclear cell infiltration in the cortex. Rat 310 Spleen: Foci of extra-medullary haemopoiesis are noted. Liver: Occasional foci of mononuclear cell infiltration are noted in the parenchyma. Kidney: Small foci of dystrophic mineralisation are noted in the medulla.